當前位置:首頁 > 知識 >

圖文徹底搞懂非對稱加密(公鑰密鑰)?

前文詳細講解了對稱加密及算法原理。那麼是不是對稱加密就萬無一失了呢?對稱加密有一個天然的缺點,就是加密方和解密方都要持有同樣的密鑰。你可以能會提出疑問:既然要加、解密,當然雙方都要持有密鑰,這有什麼問題呢?別急,我們繼續往下看。

我們先看一個例子,小明和小紅要進行通信,但是不想被其他人知道通信的內容,所以雙方決定采用對稱加密的方式。他們做了下麵的事情:

1、雙方商定了加密和解密的算法

2、雙方確定密鑰

3、通信過程中采用這個密鑰進行加密和解密

這是不是一個看似完美的方案?但其中有一個步驟存在漏洞!

問題出在步驟2:雙方確定密鑰!

你肯定會問,雙方不確定密鑰,後麵的加、解密怎麼做?

問題在於確定下來的密鑰如何讓雙方都知道。密鑰在傳遞過程中也是可能被盜取的!這裏引出了一個經典問題:密鑰配送問題。

小明和小紅在商定密鑰的過程中肯定會多次溝通密鑰是什麼。即使單方一次確定下來,也要發給對方。加密是為了保證信息傳輸的安全,但密鑰本身也是信息,密鑰的傳輸安全又該如何保證呢?難不成還要為密鑰的傳輸再做一次加密?這樣不就陷入了死循環?

你是不是在想,密鑰即使被盜取,不還有加密算法保證信息安全嗎?如果你真的有這個想法,那麼趕緊複習一下上一篇文章講的杜絕隱蔽式安全性。任何算法最終都會被破譯,所以不能依賴算法的複雜度來保證安全。

小明和小紅現在左右為難,想加密就要給對方發密鑰,但發密鑰又不能保證密鑰的安全。他們應該怎麼辦呢?

有如下幾種解決密鑰配送問題的方案:

非對稱加密也稱為公鑰密碼。我更願意用非對稱加密這種叫法。因為可以體現出加密和解密使用不同的密鑰。

對稱加密中,我們隻需要一個密鑰,通信雙方同時持有。而非對稱加密需要4個密鑰。通信雙方各自準備一對公鑰和私鑰。其中公鑰是公開的,由信息接受方提供給信息發送方。公鑰用來對信息加密。私鑰由信息接受方保留,用來解密。既然公鑰是公開的,就不存在保密問題。也就是說非對稱加密完全不存在密鑰配送問題!你看,是不是完美解決了密鑰配送問題?

回到剛才的例子,小明和下紅經過研究發現非對稱加密能解決他們通信的安全問題,於是做了下麵的事情:

1、小明確定了自己的私鑰 mPrivateKey,公鑰 mPublicKey。自己保留私鑰,將公鑰mPublicKey發給了小紅

2、小紅確定了自己的私鑰 hPrivateKey,公鑰 hPublicKey。自己保留私鑰,將公鑰 hPublicKey 發給了小明

3、小明發送信息 “周六早10點soho T1樓下見”,並且用小紅的公鑰 hPublicKey 進行加密。

4、小紅收到信息後用自己的私鑰 hPrivateKey 進行解密。然後回複 “收到,不要遲到” 並用小明的公鑰mPublicKey加密。

5、小明收到信息後用自己的私鑰 mPrivateKey 進行解密。讀取信息後心裏暗想:還提醒我不遲到?每次遲到的都是你吧?

以上過程是一次完整的request和response。通過這個例子我們梳理出一次信息傳輸的非對稱加、解密過程:

1、消息接收方準備好公鑰和私鑰

2、私鑰接收方自己留存、公鑰發布給消息發送方

3、消息發送方使用接收方公鑰對消息進行加密

4、消息接收方用自己的私鑰對消息解密

公鑰隻能用做數據加密。公鑰加密的數據,隻能用對應的私鑰才能解密。這是非對稱加密的核心概念。

下麵我用一個更為形象的例子來幫助大家理解。

我有下圖這樣一個信箱。

由於我隻想接收我期望與之通信的朋友信件。於是我在投遞口加了一把鎖,這把鎖的鑰匙(公鑰)我可以複製n份,發給我想接受其信件的人。隻有這些人可以用這把鑰匙打開寄信口,把信件投入。

相信通過這個例子,可以幫助大家徹底理解公鑰和私鑰的概念。

RSA 是現在使用最為廣泛的非對稱加密算法,本節我們來簡單介紹 RSA 加解密的過程。

RSA 加解密算法其實很簡單:

密文=明文^E mod N

明文=密文^D mod N

RSA 算法並不會像對稱加密一樣,用玩魔方的方式來打亂原始信息。RSA 加、解密中使用了是同樣的數 N。公鑰是公開的,意味著 N 也是公開的。所以私鑰也可以認為隻是 D。

我們接下來看一看 N、E、D 是如何計算的。

1、求 N

首先需要準備兩個很大質數 a 和 b。太小容易破解,太大計算成本太高。我們可以用 512 bit 的數字,安全性要求高的可以使用 1024,2048 bit。

N=a*b

2、求 L

L 隻是生成密鑰對過程中產生的數,並不參與加解密。L 是 (a-1) 和 (b-1) 的最小公倍數

3、求 E(公鑰)

E 有兩個限製:

1<E<

E和L的最大公約數為1

第一個條件限製了 E 的取值範圍,第二個條件是為了保證有與 E 對應的解密時用到的 D。

4、求 D(私鑰)

D 也有兩個限製條件:

1<D<L

E*D mod L = 1

第二個條件確保密文解密時能夠成功得到原來的明文。

由於原理涉及很多數學知識,這裏就不展開細講,我們隻需要了解這個過程中用到這幾個數字及公式。這是理解RSA 安全性的基礎。

由於 N 在公鑰中是公開的,那麼隻需要破解 D,就可以解密得到明文。

在實際使用場景中,質數 a,b 一般至少1024 bit,那麼 N 的長度在 2048 bit 以上。D 的長度和 N 接近。以現在計算機的算力,暴力破解 D 是非常困難的。

公鑰是公開的,也就是說 E 和 N 是公開的,那麼是否可以通過 E 和 N 推斷出 D 呢?

E*D mod L = 1

想要推算出 D 就需要先推算出 L。L 是 (a-1) 和 (b-1) 的最小公倍數。想知道 L 就需要知道質數 a 和 b。破解者並不知道這兩個質數,想要破解也隻能通過暴力破解。這和直接破解 D 的難度是一樣的。

等等,N 是公開的,而 N = a*b。那麼是否可以對 N 進行質因數分解求得 a 和 b 呢?好在人類還未發現高效進行質因數分解的方法,因此可以認為做質因數分解非常困難。

但是一旦某一天發現了快速做質因數分解的算法,那麼 RSA 就不再安全

我們可以看出大質數 a 和 b 在 RSA 算法中的重要性。保證 a 和 b 的安全也就確保了 RSA 算法的安全性。a 和 b 是通過偽隨機生成器生成的。一旦偽隨機數生成器的算法有問題,導致隨機性很差或者可以被推斷出來。那麼 RSA 的安全性將被徹底破壞。

中間人攻擊指的是在通信雙方的通道上,混入攻擊者。他對接收方偽裝成發送者,對放送放偽裝成接收者。

他監聽到雙方發送公鑰時,偷偷將消息篡改,發送自己的公鑰給雙方。然後自己則保存下來雙方的公鑰。

如此操作後,雙方加密使用的都是攻擊者的公鑰,那麼後麵所有的通信,攻擊者都可以在攔截後進行解密,並且篡改信息內容再用接收方公鑰加密。而接收方拿到的將會是篡改後的信息。實際上,發送和接收方都是在和中間人通信。

要防範中間人,我們需要使用公鑰證書。這部分內容在下一篇文章裏會做介紹。

和對稱加密相比較,非對稱加密有如下特點:

1、非對稱加密解決了密碼配送問題

2、非對稱加密的處理速度隻有對稱加密的幾百分之一。不適合對很長的消息做加密。

3、1024 bit 的 RSA不應該在被新的應用使用。至少要 2048 bit 的 RSA。

RSA 解決了密碼配送問題,但是效率更低。所以有些時候,根據需求可能會配合使用對稱和非對稱加密,形成混合密碼係統,各取所長。

最後提醒大家,RSA 還可以用於簽名,但要注意是私鑰簽名,公鑰驗簽。發信方用自己的私鑰簽名,收信方用對方公鑰驗簽。關於簽名,後麵的文章會再詳細講解。

猜你喜歡

微信二維碼

微信二維碼